Image enhancement, 3D reconstruction & metrology software for Scanning Electron Microscopes

- 3D reconstruction from 2 or 4 SEM images in seconds
- Instant 3D enhancement of single SEM images
- SEM image colorization, enhancement and correction
- Measurement and dimensional analysis of raw and reconstructed features
- Surface metrology including roughness and grains & particles morphology
- Colocalization for correlative studies, including SEM/SPM, SEM/optical
- Easy publication of analysis results
Superfast 3D reconstruction in a matter of seconds + surface metrology

3D from 2 images or anaglyphs

Reconstruct heights from two successive tilted scans of your sample using stereo photogrammetry reconstruction algorithms.

3D reconstruction from 2 SEM images of a periodic physical reference standard
Click on “Suggest” and the reconstruction setup is suggested automatically. Several filters can be applied including outlier removal.

Metrology

Obtain good results from high quality stereo image pairs with the same details visible in both images.

Measurements on the reconstructed surface correspond to reference standard dimensions.
Reconstruct heights from a four image scan by a 4-quadrant backscattered electron detector using shape from shading algorithms.

Enhanced rendering can be achieved by overlaying the combined SEM image on the 3D color topography at a user defined transparency level.

3D surface metrology can be carried out on reconstructed surfaces, for example morphological analysis of grains and particles\* including volume (right).

\* Requires Grains & Particles optional module.
Instant 3D enhancement of single SEM images

3D enhancement Single SEM images obtained using an oblique electron beam can be enhanced in 3D.

3D enhancement in 1 second!
3D enhancement of a single SEM image of a structure on a ladybug. (SEM image: Chris Supranowitz, University of Rochester).

Open up a new dimension in SEM image analysis!

- Zoom in on a 3D surface and rotate it in real time.
- Fly over features of interest on a surface and save your flight as a video for presentations.
- Choose the best lighting conditions.
- Level surfaces, flip them in the horizontal or vertical axis and rotate them in 1 degree increments.
- Select renderings.
- Set surface height amplification.
- Retouch any contaminated zones.
- Display contour diagrams and photo simulation.
- Extract 2D profiles from a 3D surface for visualization and analysis.

3D reconstruction of the 3D surface topography of a composite surface from a stereo image pair obtained at tilts 0° and 20°.

Here the grayscale SEM image is overlaid on the color coded topography at different transparency levels.
Assess Roughness, Waviness & Form

Advanced ISO 16610 filtering techniques and ISO 25178 3D parameters

MountainsMap® SEM makes it possible to separate the components of the reconstructed shape - form, waviness and roughness – in accordance with the latest international standards.

✔ Interactive best fit polynomial - isolates the form, with embedded sub-shape exclusion options (for example, exclusion of objects on top of a general shape).

✔ Latest ISO 16610 advanced filtering techniques to separate Waviness and Roughness.
  • From Ra to the most popular standardized surface texture parameters: ISO 25178 3D, ISO 12178 flatness, ISO 4287 2D parameters.
  • Even more parameters are available with the 3D Advanced Surface Texture optional module.

✔ Abbott-Firestone bearing ratio curve and depth distribution histogram.

✔ Wear volume assessment using before/after surface subtraction.

✔ Void/volume ratios within a surface slice.

---

SEM image pair

Primary surface obtained by 3D reconstruction

ISO 25178

Height Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sq</td>
<td>0.279  µm</td>
</tr>
<tr>
<td>Ssk</td>
<td>0.238  µm</td>
</tr>
<tr>
<td>Sku</td>
<td>4.48   µm</td>
</tr>
<tr>
<td>Sp</td>
<td>1.60   µm</td>
</tr>
<tr>
<td>Sv</td>
<td>1.35   µm</td>
</tr>
<tr>
<td>Sz</td>
<td>2.94   µm</td>
</tr>
<tr>
<td>Sa</td>
<td>0.209  µm</td>
</tr>
</tbody>
</table>
MountainsMap® SEM assures the fast and accurate analysis of surface geometry with tools for measuring:

- Distances.
- Angles.
- Areas of peaks and valleys.
- Volumes of bumps and holes.
- Material/void volume of vertical slices.
- Step heights (surfaces & profiles).
- Coplanarity.

### Vertical geometry

Horizontal \((x,y)\) profiles can be extracted from any SEM image and vertical \((x,z)\) profiles (cross-sections) can be extracted from reconstructed surfaces. Geometric dimensions (including distances, radii, diameters and angles) can be calculated using autodimensioning and interactive tools.

### Horizontal geometry

Dimensions and angles from a microfossil SEM image.

Image courtesy of Dr. Hannes Grobe, Hannover, Germany, licensed under the Creative Commons Attribution 3.0 unported license.
Image processing & analysis, the Mountains® way

Convert intensity levels into pseudo 3D to see more

Any SEM image can have its intensity signal interpreted as a height, producing a pseudo 3D image.

This is a good method for enhancing the visibility of discrete objects, for example grains and particles.

It also makes it possible to carry out 2D grains and particles analysis on the x,y plane.

Gray level drift correction and surface composition metrics

Gray level drift on a SEM image means that the image cannot be used to obtain basic surface composition metrics. This can be rectified using gray level correction tools in MountainsMap SEM (convert the SEM image into a surface with intensity units on the z-axis and then apply the multi-plane form removal operator).

Gray level drift correction of a single BSE SEM image – before correction there is variation in two homogeneous phases along the colored lines – after correction each phase of the material is colored uniformly and it is possible to obtain compositional metrics. (SEM image courtesy of the School of Geosciences, University of Edinburgh.)

1. BSE SEM image with phase variation along the added colored lines due to gray level drift.

2. Simple colorization.

3. Uniform phase coloring after drift correction.
Colocalization

Combine data from different sources for correlative studies

It is possible to colocalize:
- images obtained by different detectors, for example secondary electron (SE) images and backscattered electron (BSE) images
- images obtained by different instruments, for example a SEM image and a 3D optical microscope image
- SEM images (or images obtained by another microscope with wide field of view) with 3D topography obtained by a scanning probe microscope or 3D optical microscope*.

Following colocalization of a SEM or other image with surface topography, it is possible to overlay the image on the 3D topography and study correlations.

* Note: instrument compatibility depends on the configuration of installed MountainsMap® software. Optional extensions (SPM Extension and Spectrometry module) and upgrades provide compatibility with a range of different instrument types.

Example 1: colocalization of SEM SE and BSE images

During the vapor-liquid-solid growth of silicon nanowires the diffusion of gold from the catalyst is monitored because it affects nanowire growth.

Here the SE (secondary electron) image (1) and BSE (backscattered electron) image (2) are colocalized in Mountains® 7 and the BSE particles are colored to obtain the composite image (3).

The composite image shows that some nanowires have lost their gold droplets.

Images courtesy of EMN, Lille, France.
Example 2: colocalization of SEM image with atomic force microscope (AFM) 3D topography

Co-localization of SEM images with 3D surface topography data obtained by AFM facilitates the study of feature morphology.

Here a zone extracted from an AFM topography image of nanostructures (1) is colocalized with a BSE image (2) to obtain a composite image (3). Then the part of the BSE image that coincides with the extracted zone is overlaid on the 3D surface topography at a selected transparency level (4).

Requires SPM Extension optional module (provides compatibility with scanning probe microscopes including AFM's).

Images courtesy of LNE (French National Metrology Institute).

Example 3: colocalization of SEM image with optical microscope image

Co-localization of cropped SEM image with color optical microscope image. The SEM image is converted into a pseudo 3D image with z axis in intensity units (not shown). Overlaying the optical microscope image on the pseudo 3D image highlights surface features and chemical structure.

Images courtesy of Carl Zeiss.
Highly intuitive desktop publishing environment

Full metrological traceability, automation, fine tuning on the fly

Visual analysis reports
In MountainsMap® SEM you build a visual analysis report frame by frame, page by page, working in a comfortable desktop publishing environment. Frames contain 3D and other views of surface data, the results of applying filters, analytical studies, ISO and national parameters, measurement identity cards, comments and illustrations. You can navigate to any frame in a report by selecting it in the page viewer.

Smart user environment
The smart user environment - with logical top-down organization of all functions and contextual object-oriented ribbons - means that you can go from idea to action with minimum effort. A full screen mode provides maximum comfort when you are carrying out a specific analytical study. Furthermore you can work in your own language thanks to the fact that the user interface - including expanded graphical tooltips that provide a first level of help - is available in ten languages (EN, FR, DE, ES, IT, PL, BR, JP, CN, KR). In addition, a complete reference manual (EN, FR, DE, JP) with illustrations and examples can be accessed simply by pressing the F1 key.

Full metrological traceability
Every analysis step is recorded in a hierarchical analysis workflow to assure full metrological traceability. Analysis steps in the workflow can be fine tuned at any time. All dependent steps are recalculated automatically.

Powerful automation features
Once an analysis report has been completed it can be applied as a template to automate the analysis of multiple measurement data files. In addition common sequences of analysis steps can be saved in a library for insertion into future analysis reports to save time.

Pass/fail with tolerancing
Pass/fail criteria with tolerances can be defined for any parameter. Green/red pass fail traffic lights are displayed automatically and the parameter value and tolerance limits are shown graphically.

Data export
Frames and pages can be exported as bitmaps up to 1200 dpi for poster sessions. Finished reports can be exported in PDF and RTF formats for easy circulation.

All numerical results, including pass/fail status, are accessible in the Results Manager panel and can be exported in Excel-compatible text files for interfacing with 3rd party software, including quality management software.
MountainsMap® SEM Optional Modules
For advanced and specialized applications

Expand your MountainsMap® SEM with a wide selection of optional dedicated modules:

- **Grains and Particles Analysis** – for quantifying grains and other isolated surface features and generating statistics
- **3D Advanced Surface Texture** – more 3D surface studies, parameters and filters
- **3D Fourier and Wavelets Analysis** – analysis of process-surface interactions from spatial frequency analysis
- **4D Series** – monitor surface changes over time or experiment conditions
- **Statistics** – monitor parameters on multiple static/dynamic surface data populations
- **Advanced Contour Analysis** – comprehensive form deviation analysis
- **2D Advanced Surface Texture** - advanced 2D profile studies and filters
- **SPM Extension** – work with data from scanning probe microscopes including atomic force microscopes (AFM’s), magnetic force microscopes (MFM’s), current sensing atomic force microscopes (CSAFM’s), scanning tunneling microscopes (STM’s), scanning near-field optical microscopes (SNOM’s)
- **Spectrometry** – visualize and analyze hyperspectral data (obtained by EELS, EDX, Raman, FT-IR and other spectrometers/microscopes)

Please see the back page for a summary of the main features in each module. Three of the modules are highlighted in the next two pages.

**Grains and particles analysis module**

Study isolated surface features

- Automatically detect and count grains, particles, islands, bumps, holes and motifs (texture cells) using multiple methods:
  - 2D grains and particles on any SEM image (after conversion into an intensity map) – separate grains from the background by binarization at selected intensity level – sort grains into subsets with respect to any parameter.
  - 3D grains (islands) on 3D surface topography (after reconstruction) with respect to a selected height.
  - Motifs on 3D surface topography (after reconstruction) in accordance with a configurable ISO 25178 segmentation by watersheds algorithm and Wolf pruning.
- Calculate morphological parameters for individual grains.
- Generate statistics for all grains and subsets.
- Calculate ISO 25178 features parameters (Spd, Spc, S5p, S5v, S10z, Sha, Sda, Shv, Sdv) for 3D surface topography.

Statistics on toner particles separated from background by binarization.

Statistics on motifs (texture cells)
++ 4D series module

Monitor surface changes over time or under any experimental conditions

- Combine a series of surfaces (z axis height) or images converted into intensity maps (z axis intensity) for 4D analysis with respect to time, temperature, magnetic field or any other experimental conditions.
- Visualize surface, profile and point evolution, even fly over a surface as it changes and record a movie for presentations.
- Generate statistics on surface texture parameter evolution.
- Filter out noise and highlight areas with different kinetic behavior using the Karhunen-Loève transform (principal component analysis).

Noise can be a problem when a series of SEM images is captured at high speed.

Application of the Karhunen-Loève transform (principal component analysis) in Mountains® can help to solve this problem.

For example a typical image (2) in a series of images (1) is noisy. However, after the application of the Karhunen-Loève transform to the series of images, the resulting image (3) is of significantly higher quality.

Images courtesy of LNE (French National Metrology Institute).

++ SPM extension module

Work with SPM data

- Load SPM file formats – almost all formats generated by SPM’s (scanning probe microscopes) and SPM software packages are supported.
- Correct SPM image acquisition errors – tools include line correction and tip deconvolution.
- Manipulate multiple SPM layers simultaneously – topography, deflection, phase, current, etc.
- Overlay non-topography layers on 3D topography – study correlations between phase, current or another layer and 3D topography.
- Colocalization – use MountainsMap® SEM’s colocalization feature to colocalize SEM images with SPM topography and other layers for correlative studies

Colocalization of topography obtained by STM with SEM image of nanowire.

Images courtesy of IEMN, Lille, France.
Selected standard and optional features

MountainsMap® SEM

**Compatibility**
Scanning electron microscope images (including 3D reconstruction from stereo image pairs and image quads) - standard RGB image formats – plus with optional extensions scanning probe microscopes (AFM, MFM, CSAMF, STM, SNOM, etc.) - hyperspectral instruments (Raman, FTIR, etc.) – plus with optional upgrades 3D optical microscopes and other instruments

**Smart desktop publishing user environment**

**Image calibration**
Assign length units to image axes

**3D reconstruction of surface topography**
3D reconstruction (z axis in height units) from stereo images pairs taken at different tilt angles (or anaglyphs) using stereophotogrammetric algorithms - 3D reconstruction (z axis in height units) from 4 images captured by quad detectors using photometric stereo methods (shape from shading), optimized for rough surfaces

**3D enhancement**
3D enhancement of single SEM images obtained using an oblique electron beam.

**3D color intensity maps**
Conversion of SEM images into 3D color images with z axis in intensity units

**3D topography/ intensity map visualization**
Real time imaging of 3D surface topography – surface flyovers with video export – contour diagrams - photo-simulations - 2D profile extraction

**Image enhancement & data correction**
3D image brightness, contrast, gamma and saturation - lighting conditions - renderings and gloss - height (surface topography) or intensity (intensity map) amplification – standard or user-defined color-coded palettes for the vertical scale, optimized to take into account surface data point distribution - resampling to increase image resolution – surface leveling - x,y or z inversion - rotation – thresholding to remove anomalous peaks and pits - filling in missing points - retouching zones – gray level drift correction (using conversion into surface and multi-plane form removal)

**Geometric analysis**
Distance, angle, area, volume, step heights measurement – extraction of vertical (x,z) and horizontal (x,y) contours (profile) from surfaces – geometric dimensioning

**Surface texture analysis**
Metrological filters including form removal (surfaces), roughness/waviness filters (Gaussian to ISO 16610), spatial filters (including surface smoothing), morphological filters (surfaces) – MATLAB™ compatibility for custom filters – surface texture analysis including bearing ratio curve and depth histogram, material/void volume and thickness of vertical slices, surface subtraction (wear), sub-surface extraction and analysis, ISO 25178 3D height and functional bearing ratio - ISO 12178 flatness - ISO 4287 2D primary and roughness - ASME B46.1 3D and 2D - EUR 15178 amplitude, volume - national equivalents of ISO parameters DIN (DE), JIS (JP), NF (FR), BS (UK), UNE (ES), UNI (IT) and GB/T (CN)

**Colocalization**
Colocalization of surface data (images and/or topography) obtained by different detectors or instrument types – overlay images on 3D surface topography or intensity map for correlative studies

MountainsMap® SEM Optional Modules

**Grains & Particles Analysis**
Automatic detection of grains, particles, islands, bumps, holes and motifs (texture cells) using multiple morphological parameters – statistics – ISO 25178 features parameters – spherical parameters (microlens arrays)

**3D Advanced Surface Texture**

**3D Fourier & Wavelets Analysis**
Frequency spectrum – power spectrum density – surface autocorrelation and intercorrelation – FFT plot editor – discrete wavelet filtering (surfaces and profiles) – continuous wavelet decomposition (profiles)

**4D Series**
4D visualization, filtering and analysis of series of surfaces and images (z axis: height or intensity) - surface, profile and point evolution – surface flyover movie export – statistics on surface texture parameters – Karhunen-Loeve transform (principal component analysis) for noise filtering and highlighting areas with different kinetic behavior

**Statistics**
Automated data preparation using templates – statistical reports on multiple static and/or dynamic surface data populations - control charts for monitoring metrological and process parameters

**Advanced Contour Analysis**
Comparison of measured contours with DXF CAD data or user-defined nominal form – tolerance specification – magnified form deviation graphics – table of pass/fail results – Gothic arch bearings analysis

**2D Advanced Surface Texture**
Form removal - ISO 16610 2D roughness/waviness filters – morphological filters - 2D Fourier analysis including frequency spectrum and power spectrum density - FFT plot editor – profile data correction tools – profile subtraction - profile joining - 2D fractal analysis - series of profiles creation and analysis with statistics

**SPM Extension**
Load SPM file formats – correct SPM image acquisition errors (tools include line correction and tip deconvolution) – manipulate multiple SPM layers simultaneously – overlay non-topography layers (phase, current, etc.) on 3D surface topography – study correlations between phase, current or another layer and 3D topography

**Spectrometry**
Extension for hyperspectral instruments (including Raman, EELS, EDX and FT-IR spectrometers) - visualization of spectra and hyperspectral cubes – compositional density maps - 3D intensity maps – colocalization

MountainsMap® SEM Upgrade to MountainsMap® Premium

**Premium Upgrade**
Upgrade to MountainsMap® Premium - top of the line package compatible with 3D optical profilers, scanning probe microscopes and contact and non-contact 3D/2D surface profilometers - contains all MountainsMap® SEM modules except for Advanced Contour Analysis and Spectrometry
## Requirements

### PC requirements

<table>
<thead>
<tr>
<th>Minimum requirements</th>
<th>Operating system</th>
<th>Windows 8 (64-bit or 32-bit) or Windows 7 (64-bit or 32-bit) or Windows Vista (64-bit or 32-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td></td>
<td>4 GB</td>
</tr>
<tr>
<td>Graphics board</td>
<td></td>
<td>Hardware accelerated OpenGL or Direct3D</td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>1280 x 768 in thousands of colors</td>
</tr>
<tr>
<td>HDD free space</td>
<td></td>
<td>800 MB</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>1 free USB port</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended</th>
<th>Operating system</th>
<th>Windows 8 (64-bit) or Windows 7 (64-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td></td>
<td>8 GB</td>
</tr>
<tr>
<td>Processor</td>
<td></td>
<td>Quadcore</td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>1600 x 1024 in thousands of colors</td>
</tr>
</tbody>
</table>